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Strongly Correlated Electron Materials

•Overarching goal
Understand, predict and ultimately control the effects of correlations in quantum 
materials by developing a computational framework for controlled and unbiased 
studies of strongly interacting electron systems comprised of a diverse suite of 
complementary quantum many-body techniques

– Unconventional (high-Tc) superconductors
• Cuprates, iron-based materials, …

• Magnetism, superconductivity, charge order, …

• Pairing mechanism?

– Quantum spin liquids

• Honeycomb iridium oxides, ruthenium based materials, Herbertsmithite, …

• Geometrically frustrated magnetic interactions

• Stability of spin liquid ground state, Majorana fermions, …?

– Model description

• Accuracy needed to describe effects of correlations and phase competition 
requires use of model Hamiltonians and complementary many-body methods, in 
conjunction with high-performance computing

From Zheng et al., PRL‘17

From Keimer et al., Nature ‘15
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Numerical methods

⤻⤻ ⤻⤻

Determinant Quantum Monte Carlo 
(DQMC)

Density Matrix Renormalization group 
(DMRG)

Dynamic Cluster Approximation 
DCA(QMC)

• Finite size, quasi-1D system

• Truncates Hilbert space based on density matrix

• Limited by entanglement entropy

Blankenbecler et al., PRD ‘81.

Maier et al., RMP ‘05.

White et al., PRL ‘92.
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CompFUSE: 3 Specific Aims

SA1: Advanced simulations of 
correlated quantum materials, 
including unconventional 
superconductors and quantum 
spin liquids.

SA2: Development of accelerated 
algorithms and efficient 
implementations, based on 
DQMC, DMRG and DCA.

SA3: Development of tools for 
verification and validation of 
simulations, in particular for 
analytic continuation of QMC 
data.

⤻⤻ ⤻⤻

Three aims facilitate controlled and reliable studies of correlated quantum materials
using current petascale and future exascale computing architectures. 
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Computational Kernel of DQMC    in DQMC Sweep

Acceptance ratio related to 
computing determinant

If proposed move is
accepted, the matrix is
modified by a low rank 
update
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Computational Challenges in Determinant Monte Carlo (DQMC)

○ Many concurrent Monte Carlo “walkers” to fill device memory
○ Need evaluation of determinants, det(M+uv’) = (1 + v’inv(M)u) det(M)
○ G = inv(M) =  inv(I + BL … B2 B1), where Bi = Vi * B,  Vi is diagonal matrix but 

B is unchanged
○ L * dt = 1/(kB * T) is the inverse temperature, dt is the time step
○ Size of matrix B is related to lattice size, O(100)
○ Green’s function matrix is modified by rank-1 update when a proposed 

event is accepted (Sherman-Morrison-Woodbury formula)
○ Actual updates are delayed to perform rank-k update as matrix-matrix 

multiplication
○ If number of time steps L is large (O(100)), then computing the matrix 

product  BL … B2 B1 is extremely ill-conditioned



8

Method using QR with column pivoting
Advancing Large Scale Many-
body QMC Simulations on GPU 
Accelerated Multicore Systems, 
by A. Tomas, C-C Chang, R. 
Scalettar, Z. Bai, 2012 IEEE 26 
IPDP 

At the last step, Db and Ds are computed from DL as

Variant to reduce the cost of QR 
with pivoting (DGEQP3) by forming  
cluster of  matrices  

BL … B2 B1 = Fl … F2 F1

F1 = Bs … B2 B1
F2 =  B2s … Bs+2 Bs+1 
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Pre-pivoting method to use QR

Pre-pivoting method gives small relative differences to QRP on small problems
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Accurate Solution via SVD

U1 D1 V1’ = B1 (compute SVD)

For j=2,3, …, L do

Cj = (Bj Uj-1) Dj-1

Uj Dj Vj = Cj (compute SVD)

Enddo

Decompose DL = Db Ds,  

Where Db = entries > 1 or 1,  Ds = entries < 1 or 1

M = [I + UL DL (V1 V2 … VL)’) 

M = [I + UL Db Ds V’),  V = V1 V2 … VL

M = inv(Db) UL [ inv(Db) U’L + Ds V’ ]

G = inv(M) = inv( inv(Db) U’L + Ds V’ ) UL’ Db

Stable solutions of linear systems involving long 
chain of matrix multiplications, Z Bai, C Lee, R-C Li, 
S Xu,
Linear Algebra and its Applications, 435(3), 2011, 
p659-673
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Computational Needs

Batch DGEQRP  (QR with pivoting) on GPU

Batch SVD  on GPU 

Batch communication avoiding DGEQRP on GPU ??

Batch DGEQRF already available in CUBLAS and MAGMA

Also need batch routines to apply “Q” on GPU (DORGQR)
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Computational Challenges in DCA++

• DCA++ Monte Carlo code is collaboration with ETH and ORNL. 

• DCA++ has been finalist for Gordon Bell and optimized for Titan and Summit and able to use
mixed FP32/FP64 precision

• Self-consistency loop with 2 primary kernels:
– (1) Coarse graining of single particle Green’s function to reduce complexity of infinite size 

lattice to an effective finite cluster problem

– (2) Quantum Monte-Carlo based solution of effective cluster problem

• Kernel (1) requires global reductions and dense matrix operations to compute matrix
inverses

• Kernel (2) has computational needs in: 
– delayed submatrix-updates

– mapping of continuous time measures to Fourier representation, which requires non-uniform 
FFT or direct (batch) multiplication by Fourier matrix
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Details

• Green’s matrix is diagonal in Fourier space

• Matrix M is related to measurements at different real-space and random times

• Transform M to Fourier space:
– Direct matrix multiplication by Fourier matrix for small case

– Interpolate M (convolution with Gaussian-like function) onto regular grid

– Perform 2D FFT

– Recover Fourier coefficients of M
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Future Needs

• Computation of 4-point Green’s function G4

• Translation and lattice symmetrice reduce to 3-index array, q = k1 + k2 = k3 + k4
G4(k1,k2,k3,k4) = G4(k+q,-k,-k’,k’+q)   or   as  G(q,k,k’)

• Further calculations with G4 for dual self energy (maybe rich in convolutions)

•
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Computational Needs in DCA++

• Batch Non-uniform  FFT on GPU

• Batch 2D FFT  in FP32 that can take advantage of tensor cores (FP16)
– Radix-4 Fourier 4x4 matrix consists of {-1,0,1} (related to cos(90), sin(90) exactly presentable in 

FP16

– Radix-2 Fourier 2x2 matrix is real and consist of {1,-1}, exactly presentable in FP16

– Radix-8 Fourier 8x8 matrix has sqrt(2)/2 = cos(45) ~ 985/1393 approximated as  rational integer
representation in FP16

– Split X_fp32(:) = X1_fp16(:) + (2^(-10)) * X2_fp16(:),   then
FFT(X_fp32) = FFT( X1_fp16) + (2^(-10)) * FFT( X2_fp16)

• Library and algorithms for distributed array to hold 3-index G4, gamma and convolution 
calculations  for dual self energy
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Computational Challenges in 
Density Matrix Renormalization Group (DMRG++)

• Goal to find few lowest eigen pairs of Hamiltonian by finding a 
suitable subspace. Iteration by considering “left” and “right” parts of
lattice. 

• Matrix-vector multiplication in Lanczos method  is dominant kernel

• Hamiltonian is expressed as sum of Kronecker of operators

Hamiltonian has symmetry property and conservers quantum numbers

• Key insight: group states by quantum numbers (as patches) to express 
Hamiltonian as many sums of Kronecker products of small dense 
matrices 

• Several nested levels of parallelism, challenges with load balancing
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Kronecker Product

• If matrix A is m by n, matrix B is p by q,  C = kron(A,B) is (m*p) by (n*q)
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Implementation as Batched DGEMMs

• Recall vec(Y) = kron(A,B) * vec(X)  can be evaluated as Y = B * X * transpose(A)

• Hamiltonian is block partitioned, 

• Let WIJ
(k) = BIJ

(k) * X[J] 
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Computational Needs of DMRG++

• Hamiltonian is Hermitian,  C[I,J] = conj( transpose( C[J,I]) ) = C[J,I]’

• Recall conj( transpose( kron(A,B) ) ) = kron( conj(transpose(A)), conj(transpose(B)) )

• Vec(Y))  = kron( A’,B’) * vec(X),   evaluated as  Y = (B’) * X * transpose(A’) = (B’)*X*conj(A)

• Would be nice to take advantage of symmetry by storing only triangular part in GPU device 
memory.

• Need  pure conjugate option (not conjugate transpose)  in ZGEMM (possible work around by 
storing transpose of A in memory).

• Need option for atomic update in batched GEMM  for    C += a*A*B
– Volta and Pascal GPU has hardware atomic update for FP64 and FP32

– Atomic add needed only when storing “C(I,j)” from shared memory to global memory and only 
when “beta=1” for C += a*A*B

– Only very minor changes in code for MAGMA batched BLAS

– May also be useful for element-by-element formulation in FEM for matrix-vector multiply
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backup
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Efficient Implementations
• Nested parallelism: block rows, block 

columns, sums of Kronecker products, 
matrix-matrix operations• Significant imbalances in workload • Task-based OpenMP parallelism• Batched DGEMM operations on GPU 
using MAGMA library• 15X speedup (over start of project) on 
multicore CPUs

• 6 Tflops (FP32) on GPU

Histogram of work intensity in Hamiltonian matrix

Batched GEMM performance (FP32) in DMRG++ on Volta GPU
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Reformulation as Kronecker Products

• Hamiltonian matrix in DMRG is expressed as 
Kronecker product of operators

•
Hamiltonian has symmetry property and 
conserves quantum numbers• Key insight: group states by quantum numbers 
(as patches) to express Hamiltonian as many 
sums of Kronecker products of small dense 
matrices

Block partitioning of Hamiltonian matrix. 
Each submatrix is sum of Kronecker products.

Acceptable states (organized by quantum number) 
form non-overlapping patches.


